jueves, 25 de febrero de 2010

Teorema de Tales de Mileto

Como definición previa al enunciado del teorema, es necesario establecer que dos triángulos se llaman semejantes si tienen los ángulos correspondientes iguales y sus lados son proporcionales entre sí. El primer teorema de Tales recoge uno de los resultados más básicos de la geometría, a saber, que:










Si por un triángulo se traza una linea paralela a cualquiera de sus lados, se obtienen dos triángulos semejantes.




Según parece, Tales descubrió el teorema mientras investigaba la condición de paralelismo entre dos rectas. De hecho, el primer teorema de Tales puede enunciarse como que la igualdad de los cocientes de los lados de dos triángulos no es condición suficiente de paralelismo. Sin embargo, la principal aplicación del teorema, y la razón de su fama, se deriva del establecimiento de la condición de semejanza de triángulos, a raíz de la cual se obtiene el siguiente corolario.


Corolario


Del establecimiento de la existencia de una relación de semejanza entre ambos triángulos se deduce la necesaria proporcionalidad entre sus lados. Ello significa que la razón entre la longitud de dos de ellos en un triángulo se mantiene constante en el otro.


Por ejemplo, en la figura se observan dos triángulos que, en virtud del teorema de Tales, son semejantes. Entonces, del mismo se deduce a modo de corolario que el cociente entre los lados A y B del triángulo pequeño es el mismo que el cociente entre los lados D y C en el triángulo grande. Esto es, que como por el teorema de Tales ambos triángulos son semejantes, se cumple que:



Este corolario es la base de la geometría descriptiva. Su utilidad es evidente; según Heródoto, el propio Tales empleó el corolario de su teorema para medir la altura de la pirámide de Keops en Egipto. En cualquier caso, el teorema per se demuestra la semejanza entre dos triángulos, no la constancia del cociente entre sus lados.


Segundo teorema



El segundo teorema de Tales de Mileto es un teorema de geometría particularmente enfocado a los triángulos rectángulos, las circunferencias y los ángulos inscritos, consiste en el siguiente enunciado:








Sea C un punto de la circunferencia de diámetro [AB], distinto de A y de B. Entonces el ángulo ACB, es recto.








Este teorema es un caso particular de una propiedad de los puntos cocíclicos y de la aplicación de los dentro de una circunferencia.


Comprobación: OA = OB = OC = r, siendo O el punto central del círculo y r el de la circunferencia. Por lo tanto OAC y OBC son isósceles. La suma de los ángulos del triángulo ABC es equivalente a 2α + 2β = π (radianes). Dividiendo por dos, se obtiene:

(o 90º).


Además, la de un triángulo corta al lado opuesto del ángulo con la bisectriz en dos segmentos iguales. Hipotenusa² = C² + C², es decir AB²=CA²+CB².


En conclusión se forma un triángulo rectángulo.

sábado, 20 de febrero de 2010

La recta de Euler

En un triangulo cualquiera "La recta de Euler", es la recta que pasa por el Ortocentro(donde se cortan las alturas), Baricentro(donde se cortan las medianas) y Circuncentro(donde se cortan las mediatrices).
Su nombre se debe al matematico Leonard Euler (1707-1783)

sábado, 13 de febrero de 2010

Biografia de Pitagoras


(isla de Samos, actual Grecia, h. 572 a.C.-Metaponto, hoy desaparecida, actual Italia, h. 497 a.C.) Filósofo y matemático griego. Se tienen pocas noticias de la biografía de Pitágoras que puedan considerarse fidedignas, ya que su condición de fundador de una secta religiosa propició la temprana aparición de una tradición legendaria en torno a su persona.

Parece seguro que Pitágoras fue hijo de Mnesarco y que la primera parte de su vida la pasó en Samos, la isla que probablemente abandonó unos años antes de la ejecución de su tirano Polícrates, en el 522 a.C. Es posible que viajara entonces a Mileto, para visitar luego Fenicia y Egipto; en este último país, cuna del conocimiento esotérico, se le atribuye haber estudiado los misterios, así como geometría y astronomía.

Algunas fuentes dicen que Pitágoras marchó después a Babilonia con Cambises, para aprender allí los conocimientos aritméticos y musicales de los sacerdotes. Se habla también de viajes a Delos, Creta y Grecia antes de establecer, por fin, su famosa escuela en Crotona, donde gozó de considerable popularidad y poder.

La comunidad liderada por Pitágoras acabó, plausiblemente, por convertirse en una fuerza política aristocratizante que despertó la hostilidad del partido demócrata, de lo que derivó una revuelta que obligó a Pitágoras a pasar los últimos años de su vida en Metaponto.

La comunidad pitagórica estuvo seguramente rodeada de misterio; parece que los discípulos debían esperar varios años antes de ser presentados al maestro y guardar siempre estricto secreto acerca de las enseñanzas recibidas. Las mujeres podían formar parte de la cofradía; la más famosa de sus adheridas fue Teano, esposa quizá del propio Pitágoras y madre de una hija y de dos hijos del filósofo.

El pitagorismo fue un estilo de vida, inspirado en un ideal ascético y basado en la comunidad de bienes, cuyo principal objetivo era la purificación ritual (catarsis) de sus miembros a través del cultivo de un saber en el que la música y las matemáticas desempeñaban un papel importante. El camino de ese saber era la filosofía, término que, según la tradición, Pitágoras fue el primero en emplear en su sentido literal de «amor a la sabiduría».

También se atribuye a Pitágoras haber transformado las matemáticas en una enseñanza liberal mediante la formulación abstracta de sus resultados, con independencia del contexto material en que ya eran conocidos algunos de ellos; éste es, en especial, el caso del famoso teorema que lleva su nombre y que establece la relación entre los lados de un triángulo rectángulo, una relación de cuyo uso práctico existen testimonios procedentes de otras civilizaciones anteriores a la griega.



El esfuerzo para elevarse a la generalidad de un teorema matemático a partir de su cumplimiento en casos particulares ejemplifica el método pitagórico para la purificación y perfección del alma, que enseñaba a conocer el mundo como armonía; en virtud de ésta, el universo era un cosmos, es decir, un conjunto ordenado en el que los cuerpos celestes guardaban una disposición armónica que hacía que sus distancias estuvieran entre sí en proporciones similares a las correspondientes a los intervalos de la octava musical. En un sentido sensible, la armonía era musical; pero su naturaleza inteligible era de tipo numérico, y si todo era armonía, el número resultaba ser la clave de todas las cosas.

La voluntad unitaria de la doctrina pitagórica quedaba plasmada en la relación que establecía entre el orden cósmico y el moral; para los pitagóricos, el hombre era también un verdadero microcosmos en el que el alma aparecía como la armonía del cuerpo. En este sentido, entendían que la medicina tenía la función de restablecer la armonía del individuo cuando ésta se viera perturbada, y, siendo la música instrumento por excelencia para la purificación del alma, la consideraban, por lo mismo, como una medicina para el cuerpo. La santidad predicada por Pitágoras implicaba toda una serie de normas higiénicas basadas en tabúes como la prohibición de consumir animales, que parece haber estado directamente relacionada con la creencia en la transmigración de las almas; se dice que el propio Pitágoras declaró ser hijo de Hermes, y que sus discípulos lo consideraban una encarnación de Apolo.